
Energy-Aware Scheduling for Microservice-Based

Applications

1 Introduction

Despite the improvements in energy-efficiency of hardware, the overall energy
consumption in large-scale computing data centers continues to grow. That in-
creasing energy consumption of computing systems has become a limiting factor
for further performance growth due to overwhelming electricity bills, complex
requirements for the cooling system and power supply infrastructure, high car-
bon dioxide footprints, and more [1].

Existing work on energy-aware resource management approaches for data
centers mostly relies on reallocating virtual machines between physical hosts,
thus consolidating the workload into the minimum of physical resources and
preventing resource underutilization [2, 3]. However, little attention is given to
application running on these machines and to application-level policies that can
facilitate further energy savings.

One substantial portion of cloud-native workloads nowadays is applications
built following microservice architectural principles [4, 5, 6, 7]. A microservice-
based application is a large distributed system that consists of small, loosely cou-
pled, mono-functional services communicating with each other over a network.
The benefits of decomposing a monolithic application into smaller independently
deployable and decentralized services include an independent development and
deployment of each service, heterogeneity of used tech stacks, loose coupling,
and high cohesion. However, as interrelated parts of the application extensively
communicate with each other, deployment of services in nodes can greatly affect
the energy consumption of the system. In fact, according to data provided by
Intel Labs [8], networking accounts for a large fraction of the power consumed
by a machine; as such, deploying services with a high communication volume on
separate machines will negatively impact the energy consumption of a cluster.

With the growing popularity of microservices, the goal of this project is
to propose an energy-aware scheduler for microservice-based applications. The
scheduler takes into account information about (a) the traffic patterns between
microservices, (b) constraints on resource consumption of each individual mi-
croservice, and (c) availability and utilization of nodes in the cluster. It uses this
information to adjust the placement of microservices and optimally distribute
interrelated microservice workloads. By the end of the project, we intend to
measure whether the proposed algorithm improves the utilization of cluster re-
sources and energy-efficiency of the cluster, without sacrificing performance.

We perform our experiments in a cluster managed by Kubernetes [9]. In
such clusters, microservices run inside pods (typically, one microservice per pod)

1

and pods are allocated to nodes by the Kubernetes scheduler. There are three
major sources of network traffic: traffic generated by application users, traf-
fic generated by communication between pods, and traffic generated by active
monitoring (metrics collection). The combination of these three factors can
cause congestions in the cluster. When network bandwidth becomes a bottle-
neck, our proposed algorithm is expected to lower resource utilization and power
consumption without sacrificing performance (response time) of applications.

2 Proposed Algorithm

We assume a homogeneous compute cluster consisting of virtual machines (VMs)
VM, |VM| = v which run on physical machines (PMs) PM, |PM| = p, p ≤ v.
Homogeneous cluster implies that all VMs have the same capacity in terms of
CPU, memory, and disk, denoted by VMC , VMM , and VMD, respectively.
PMs are placed in a number of network racks R, |R| = r, r ≤ p.

Our goal is to schedule a set of services S on this compute cluster. For
each service S ∈ S, SC , SM , and SD denote the peak CPU, memory, and disk
consumption of S, respectively. These values are initially specified by the user
directly, as in the standard Kubernetes scenario. They can further be refined
dynamically by observing services’ execution over a period of time P .

We assume the standard Kubernetes scheduling strategy of placing new ser-
vices as they arrive to the cluster based on VMs’ capacity. The main issues with
this strategy is that (a) it does not re-evaluate and optimize the status of the
cluster as new services arrive and the workload of existing services changes and
(b) it does not take into account network interactions between the scheduled
services.

We thus propose to monitor the current status of the cluster and network
interactions between services and, periodically, re-distribute the services in the
cluster to achieve better utilization and energy savings. Such re-distribution is
required as the workload and interaction patterns between services might change
over time, and the initial placement might no longer be optimal.

The goal of our algorithm is to produce a placement that:
• does not exceed the CPU, memory, and disk capacities of each VM (thus

maintaining original performance guarantees),

• minimizes network interactions between services placed on different VMs,
different PMs, and different racks (thus reducing physical network inter-
actions while improving performance and energy efficiency), and

• “packs” the services on existing VMs (thus ensuring that the overall re-
source consumption remains low).

An exact solution to this optimization problem is at least NP-complete: the
complexity of the well-known bin packing problem, which can be used just to
place services on VMs, is NP-complete and our problem is at least as hard. As
such, in practice, it is unfeasible to efficiently find an optimal solution and we
need to apply a heuristic algorithm.

The main idea behind our algorithm is to use Agglomerative Hierarchical
Clustering [10, 11] to build “communities” of services that exchange a large
volume of information. The clustering algorithm accepts a custom distance

2

Figure 1: A dendrogram.

function – a measure of similarity between the clustered elements, and builds a
dendrogram – a tree diagram arranging the input elements, as show in Figure 1.
The root node of the dendrogram represents the entire data set and each leaf
is regarded as a data object — in our case, a service. In Figure 1, there are 25
services: 5 in red, 8 in green, and 12 in blue.

The intermediate nodes of a dendrogram describe the proximity of the ob-
jects in their subtree to each other: the “lower” the two nodes in the tree are
connected, the more similar their corresponding data objects are. In our case,
object are considered similar if they exchange a large volume of data with each
other. For the example in Figure 1, services depicted in each distinct color are
similar to each other, i.e., they exchange a large volume of information with each
other. Moreover, services depicted in red are more similar to services depicted
in green than those in blue, which means that “red” services exchange more
information with “green” services than with “blue” services.

More formally, we denote the cumulative volume of data exchanged between
services Si and Sj over a period of time P by BSi−Sj . For calculating BSi−Sj , we
consider incoming and outgoing traffic together, which means BSi−Sj = BSj−Si .

We define the similarity (distance) function d between two services Si and
Sj as d(Si, Sj) = BSi−Sj

For the hierarchical clustering algorithm to work correctly, we also need to
provide the distance function between two clusters Ci and Cj , each consisting
of multiple services. We define this function as the sum of traffic between all
services in Ci with all services in Cj :

d(Ci, Cj) =
∑

∀Si∈Ci,∀Sj∈Cj

BSi−Sj

The goal of our algorithm is to identify clusters of services that can be placed
on the same VM, then on other VMs on the same PM, and then on other PMs
on the same rack. It accepts as input a dendrogram D, which is a set of nodes
{N} with the leafs nodes being individual service in S. It then labels each leaf
service S ∈ S with a VM ∈ VM on which this service is scheduled to run.

Algorithm 1 outlines our approach. It maintains a variable cVM which
represents the current VM on which the placement is made. Initially, cVM is

3

set to a random VM from VM (line 1). The algorithm then starts a pre-order
tree traversal of the dendrogram (line 2). That traversal first checks if a node
N , which can be a singular service or a group of services, can fit into any VM
(line 4). If N is not “placeable”, this means that we need to break the group
into smaller subsets. The algorithm then recursively visits both children of N
by calling traverse(N.left) and traverse(N.right). Otherwise, N can be placed
in a machine and the goal of the algorithm is to find the “right” machine for all
services in N (lines 7–20).

Input : Dendrogram D
Output: A placement of each leaf service S ∈ D on a VM ∈ VM

1 cVM ← pick random from VM ; // pick the first VM randomly

2 traverse(D, cVM) ; // start the recursive traversal

3 Procedure traverse(N, cVM)

4 if !placeable (N) then
// N is too big to fit any VM

5 traverse (N.left, cVM);
6 traverse (N.right, cVM);

7 else if placeable (N,cVM) then
// N can fit the current VM

8 place (N,cVM);

9 else if placeable (N,cVm.PM) then
// N can fit in a VM from the current PM

10 cVM ← getClosestFromPM(N,cVm.PM) ; // find the closest VM

in PM

11 place (N,cVM);

12 else if placeable (N,cVm.PM.Rack) then
// N can fit in a VM from the current rack

13 cVM ← getClosestFromRack(N,cVm.PM.Rack) ; // find the

closest VM in Rack

14 place (N,cVM);

15 else
16 cVM ← getClosestFromSystem(N) ; // find the closest VM in the

system

17 if cVM = null then
// No existing VM can host N

18 return ERROR ; // No VM is available!

19 else
20 place (N ,cVM);

21 return
Algorithm 1: Scheduling Procedure.

The first attempt is to place N on the current VM, cVM (lines 7–8). If cVM
does not have enough capacity to host all services in N , the algorithm attempts
to find the closest VM in the same PM (lines 9–11). The details of how the
heuristics for finding the closest VM works are given below. If, in this step, the
algorithm can successfully acquire such a VM on the same PM, all services in N
are placed on that VM. Moreover, it becomes the current VM, cVM, to host the
following nodes. The rationale for this decision is to try and place subsequently

4

traversed nodes, which are closest to the current one (in terms of the distance
d), on that same VM.

Otherwise, the algorithm attempts to place N in a VM that is on the closest
PM in the same rack (lines 12–14), making that VM the current VM to schedule
next services on. Finally, if it cannot be placed on a VM in the same rack, the
algorithm gets a new rack and switches placing services there (lines 15–20).
The details for heuristics we apply for finding the closest PM in a rack and the
closest rack in the system are given below. In no suitable VM is found in the
entire system, the algorithm terminates and returns an error (line 18).

The algorithm relies on a set of helper functions:

• label(N,VM): labels all leaf services in the sub-tree N of D with the VM
and calculates the remaining capacity of the VM

VMC−remains ← VMC−remains −
∑
∀S∈N

SC
i

VMM−remains ← VMM−remains −
∑
∀S∈N

SM
i

VMD−remains ← VMD−remains −
∑
∀S∈N

SD
i

• isP laceable(N): checks if all leaf services in the sub-tree N of D can run
on any VM, i.e., their overall capacity does not exceed the top capacity
configured for VMs in the system∑

∀S∈N

SC
i ≤ VMC ∧

∑
∀S∈N

SM
i ≤ VMM ∧

∑
∀S∈N

SD
i ≤ VMD

• isP laceable(N,VM): checks if all leaf services in the sub-tree N of D can
run on a particular VM VM , i.e., their overall capacity does not exceed
the remaining capacity of that VM∑
∀S∈N

SC
i ≤ VMC−remains∧

∑
∀S∈N

SM
i ≤ VMM−remains∧

∑
∀S∈N

SD
i ≤ VMD−remains

• isP laceable(N,PM): checks if all leaf services in the sub-tree N of D
can run on a VM in the given PM PM . This function iterates over all
VMs in the given PM and returns true if at least one isP laceable(N,VM)
evaluates to true.

• isP laceable(N,Rack): checks if all leaf services in the sub-tree N of D
can run on a VM in the given Rack. Similar to the previous case, this
function iterates over all PMs in the given Rack and returns true if at
least one isP laceable(N,PM) evaluates to true.

• getClosestFromPM(N,PM): finds a suitable VM inside the PM. A
straightforward solution could be to find a random VM that has enough
capacity to host all services in N . However, as our goal is to maximize
network interaction between services on one machine and minimize inter-
action between services across machines, we attempt to find a VM that is

5

most likely to host a set of services close to N . To achieve that, each PM
maintains two data structures: a stack of VMs that already have some
services assigned and a set of empty VMs. Each time the algorithm looks
for a new VM that can host N , it traverses the stack top down, thus
prioritizing VM closer to the top of the stack, as they are more likely to
host the “closest” set of nodes. For each traversed VM, it checks whether
the VM can host all services in N (by calling isP laceable(N,VM)). If
no suitable VM is found in the entire stack, a new VM is allocated from
the set of empty VMs, pushed on top of the stack, and returned by the
function. The function returns null if no VM is available.

• getClosestFromRack(N,Rack): finds a suitable VM inside the rack. Sim-
ilar to the previous function, each rack maintains two data structures: a
stack of PMs that already have some VMs assigned and a set of empty
PMs. Each time the algorithm looks for a new VM that can host N , it
traverses the stack top down, thus prioritizing PM closer to the top of the
stack, as they are more likely to host the closest set of nodes. For each
PM, it calls getVMFromPM(N , PM) and, if a suitable VM found, returns
it. If traversal over the stack of “in use” PMs does not find a suitable VM,
a new PM is added on top of the stack and a VM is allocated from this PM
(by calling getVMFromPM(N , PM) again). The function returns null if
no PM is available.

• getClosestFromSystem(N): finds any suitable VM in the cluster. This
function is called if N could not be placed in the same VM, PM, and
rack as the previously placed node. Then, it finds and returns a new rack
containing a VM that can host all services in N (using the same stack-
based logic as in the previous function) or returns null if none found.

Figure 2: Prototype Design

6

3 Prototype Implementation

Our custom scheduler is configured to run on Kubernetes and uses Prometheus,
Grafana and Istio, which are described below.

3.1 Tool Selection

Kubernetes. Kubernetes is an open-source orchestration tool for managing
containerized applications across multiple hosts [9]. It consists of at least one
master node and several worker nodes. Together, the master and worker nodes
form a Kubernetes cluster. The Kubernetes master runs three processes to main-
tain the desired state of the cluster: kube-apiserver, kube-controller-manager,
and kube-scheduler (see Figure 2).

• The kube-apiserver acts as the front end to the cluster’s shared state and
exposes REST APIs through which different components can interact.

• The kube-controller-manager is a control loop that watches the state of
the cluster through kube-apiserver. It works towards moving the current
state of the cluster to the desired state by performing a variety of tasks
such as starting or stopping containers, scaling the number of replicas of
a given application, and more.

• The kube-scheduler (a.k.a. the default scheduler) is a process that sched-
ules pods onto worker nodes using the information about cluster topology
and application workload.

Each worker node runs two processes: kubelet, which communicates with
the master, and kube-proxy – a network proxy. Kubernetes also has a database
called etcd that stores and replicates the cluster state. Kubernetes makes use of
abstractions to create the components of the distributed application and their
associated resources. These abstractions are represented by objects in the Ku-
bernetes API. Some of the Kubernetes objects are Pods, Services, Volumes,
Namespaces, Deployments, and DaemonSets. The objects have a resourceVer-
sion that represents the version of the object at a given instance as stored in the
Kubernetes database (etcd). Kubernetes also offers a command line interface
called Kubectl that connects to the kube-apiserver for managing applications
on the cluster.
Prometheus and Grafana. To measure the real-time resource usage of con-
tainers, pods, and nodes, we deployed a full metrics collection and monitoring
pipeline using Prometheus and Grafana. Prometheus is an open-source mon-
itoring and alerting framework that scrapes core metrics (CPU, DISK I/O,
Network, Memory) from various Kubernetes endpoints via a pull model over
HTTP and writes them to a time series database. Prometheus server runs as a
pod in the cluster and it offers an HTTP API that is reachable under /api/v1
to retrieve the desired metrics. Grafana is a data visualization and monitoring
tool that can be integrated to query Prometheus and to create dashboards for
exploring and understanding the metrics Prometheus collects.
Istio. Istio is an open-source platform that connects and manages microservices
by creating a network service mesh. It acts as a network proxy and is deployed
as a sidecar to each microservice in the Kubernetes pod without any changes

7

to the source code. It offers functionality like network monitoring, load bal-
ancing, fault injection, security and tracing. Istio gathers vital metrics like the
number of bytes exchanged between microservices, request duration and other
telemetry data for every hop. It comes with a built in Prometheus adapter that
exposes these metrics and the Prometheus server scrapes these metrics from
these exposed endpoints.

3.2 Scheduler Implementation

Kubernetes supports configuring multiple schedulers, making it possible to choose
the appropriate scheduler at the time of deployment. Our custom scheduler runs
on the master node outside the cluster as a process (see Figure 2) and has an API
interface to connect and interact with both the kube-apiserver and Prometheus
server. The scheduling algorithm takes into consideration three factors to sched-
ule a pod to a node, which are: (a) the constraints on resource consumption of
the pod that can be read from Pod specifications given at the time of deploy-
ment, (b) cluster resource availability and utilization details that are obtained
from Prometheus or Kubernetes metrics API, and (c) Network traffic patterns
between deployed pods obtained from Prometheus that are collected and pushed
by Istio. Once a scheduling decision is made, the decision is propagated back
to the kube-apiserver via a binding API that binds the pod to a node.
Kuberentes APIs. The API interface uses a Kubernetes API client library
in Golang called ’client-go’ [12], to implement API calls to the kube-apiserver.
These APIs give the list of objects, such as Pods and Nodes, available in the
cluster. The meta-data and specifications of the objects provide user-defined
parameters like requested resources. The parameters of interest here are CPU,
memory, and disk limits of Pods. Several API endpoints are used to perform
tasks like listing available nodes, listing pods to be scheduled, and propagating
scheduling decisions. Table 1 provides a list of API calls we used and describes
the functionality they provide.

Table 1: Kubernetes APIs and their functionalities

Functionality and Metric API Endpoint and Resource Type

List available nodes (VM) ’/api/v1/{namespaces}/nodes’
List pods to be scheduled (S) ’/api/v1/{namespaces}/pods’
Propagate scheduling decision ’/api/v1/namespaces/{namespace}/bindings’
Retrieve pod CPU limit (SC) Pod.Spec.Containers.Resouces.Limits[ResouceCPU]
Retrieve pod memory limit (SM) Pod.Spec.Containers.Resouces.Limits[ResouceMemory]
Retrieve pod disk limit (SD) Pod.Spec.Containers.Resouces.Limits[ResouceStorage]

Prometheus APIs. The API interface also uses a Prometheus HTTP library
called ’client-golang’ [13] to query metrics from Prometheus database. The
metrics retrieved from Prometheus and their corresponding queries are listed in
Table 2.
Communication Pattern Matrix. Our scheduler takes in the network traffic
pattern between the microservices as input to perform agglomerative hierarchi-

8

Table 2: Metrics from Prometheus Query

Metric Query Parameter

Node CPU capacity (VMC) machine cpu cores
Node memory Capacity (VMM) machine memory bytes
Node lables (PM and Rack) machine memory bytes

cal clustering and make the binding decision. The traffic pattern is represented
by a half matrix with the height and width of the matrix equal to the number
of microservices deployed in a particular namespace. Each microservice is as-
signed an index and represents the row and column of the matrix corresponding
to their index. Any value in the matrix represents the total volume of bytes
exchanged between the corresponding microservices. The value is obtained by
querying two Istio metrics from Prometheus (incoming and outgoing traffic)
and computing their sum. The metrics have source workload and destination
workload labels that are used to query the volume of bytes exchanged between
any two particular microservices. They metrics used are listed in Table 3.

Table 3: Metrics from Istio

Metric Query Parameter

Incoming traffic of services (BSi−Sj
) istio tcp received bytes total

Outgoing traffic of services (BSi−Sj) istio tcp sent bytes total

Scheduler. The scheduler itself is implemented in Golang and Python using
1079 lines of code. It used the implementation of Agglomerative Hierarchical
Clustering from the Python scipy.cluster.hierarchy.linkage library [14].

4 Evaluation Methodology

We evaluate the performance (in terms of response time) of the scheduled ap-
plications and the overall energy consumption of the cluster for our algorithm
described in Section 2 and compare with the default, out of the box scheduling
algorithm provided by Kubernetes. We run the experiments on a benchmark
application and on an openly-available microservice-based application: Robot
Shop [15]. We describe the details of our experimental setup below.

4.1 Cluster Configuration

For our experiments, we use four physical machines (servers); each server has 4
cores, 8 GB of memory, 1 TB disk space, 1 Gbps NIC, and runs Ubuntu 16.04.
To simulate a cluster with VMs, PMs, and racks using these five machines, we
treat each of them as a VM server and then “group” them into PMs and racks
by controlling the network bandwidth between the machines. Specifically, we

9

Figure 3: Cluster simulation sample input

tag each machine as a VM, naming them VM1, VM2, VM3, and VM4. Then, we
divide them into three groups and tag group as PM1, PM2 and PM3. Further,
we divide these PMs into two different racks, R1 and R2.

To simulate networking bandwidth in the cluster, we configure the network
bandwidth between VMs, PMs and Racks using Traffic Control in the Linux
kernel. With this type of flexible configuration mechanism, it is easy to simulate
different cluster set ups to perform experiment. Figure 3 shows the JSON input
file used to define the cluster. In our case, VM1 is placed on PM1, VM2 is
placed on PM2, and both VM3 and VM4 are placed on PM3. Both PM1 and
PM2 are in R1, while PM3 is in R2. The network bandwidth restriction are
also given at the bottom of this configuration file, in KBps. For example, the
network bandwidth between VM3 and VM4 is 7000 KBps, while the bandwidth
between VM1 and VM2, which are in two different PMs, PM1 and PM2, is 1000
KBps.

10

Figure 4: Communication pattern in benchmark application

4.2 Case Studies

4.2.1 Benchmark application

We designed a benchmark application that consists of five microservices, as
shown in Figure 4. The figure also depicts the amount of data exchanged be-
tween the microservices, in megabytes. We intentionally vary the amount of
data exchanged between the microservices, to make sure that our scheduler
considers the communication patterns when making placement decision. We
use this application to stress-test our algorithm.

4.2.2 Robot Shop

Robot Shop [15] is an openly-available sample e-commerce application that con-
sists of 12 microservices: web, user, mongodb, catalogue, cart, redis, dipatch,
rabbitmq, ratings, shipping, mysql, and payment. The data exchanges varies
between the microservices, as seen in Figure 5. Thus, this application is highly
suitable for evaluating our scheduler. We use this application to show the ap-
plicably of our algorithm in practice.

For the evaluation, we have chosen to trigger the API of the cart microser-
vice, ”/api/cart/{user}/{product}/{quatity}”, that interacts with Redis, cat-
alouge, and mongodb to complete the request.

4.3 Load generation

We use sinusoidal pattern to generate load on microservices. Previous studies
of user load for the real-world applications, such as Wikipedia, showed that
user load follows that pattern [16]. We simulate the varying load on the bench-
marking application and Robot Shop by increasing the number of concurrent
requests with time. As bandwidth usage and network bottlenecks increase with
number of concurrent requests, this method made it possible for us to evaluate
the performance of our custom scheduler under varying network usage.

11

Figure 5: Communication pattern in Robot Shop application

We used Apache HTTP server benchmarking tool [17] for simulating sinu-
soidal load pattern on benchmarking application, increasing the load incremen-
tally, from 1 to 10 concurrent requests, and then decreasing it in the similar
manner, as shown in Figure 6.

For the Robot Shop application, we generated the load using Jmeter [18]
by creating a test plan in the Jmeter that consists of 18 thread groups and
each thread group contains different number of parallel HTTP requests. These
thread groups are executed sequentially, starting with 10 concurrent requests
and increasing up to 50 concurrent requests in interval of 10 requests, as shown
in the Figure 9.

4.4 Metrics and Measures

We perform the experiments on the two applications described above and record
the response time for requests sent to the application and energy consumption
of the machines in the cluster. We follow below steps for each application:

1. Deploy an application with Kubernetes default scheduler.

2. Put varying loads on the deployed application using a load generator.

3. For each load pattern, record the response time from the load generator
and energy consumption using external power meter.

4. Repeat the steps 1,2, and 3 for Kubernetes configured with our custom
scheduler.

12

5 Results

In the section, we discuss the results of our experiments.

Figure 6: Performance comparison of schedulers for Benchmark application

Figure 7: Bemchmark application microservices placement by Kubernetes de-
fault scheduler

13

Figure 8: Benchmark application microservices placement by our custom sched-
uler scheduler

Figure 9: Performance comparison of schedulers for Robot Shop application

5.1 Evaluation on our benchmark application

First, we deploy the benchmark application using the Kubernetes default sched-
uler and apply the load on the deployed application. We perform the same
experiment using our custom scheduler. The performance obtained for both
schedulers is shown in the Figure 6.

14

Figure 10: Robot Shop application microservices placement by Kubernetes de-
fault scheduler

Figure 11: RobotShop application microservices placement by our custom sched-
uler scheduler

We deployed using our custom scheduler, the application consistently out-
performs its equivalent deployed using the Kubernetes default scheduler. On
average, performance of the benchmark application improves by approximately
48% and we get energy saving of around 42% at the completion of the exper-
iment. We get the improvement in the performance and energy consumption
in case of our scheduler because the scheduler also takes into consideration the
communication patterns among the microservices and places the highly commu-
nicating microservices as close as possible. Figures 7 and 8 show the placement
of the microservices in the cluster by the default scheduler and our custom
scheduler, respectively.

15

5.2 Evaluation on Robot Shop application

Similar to the benchmark app, we first deploy Robot Shop using the Kubernetes
default scheduler and apply the load on the deployed application as described
in the load generation. We then perform the same experiment using our custom
scheduler. The performance for both schedulers is shown in the Figure 9.

Again, the performance of Robot Shop application deployed using our cus-
tom scheduler is better than its equivalent deployed using the Kubernetes de-
fault scheduler. On average, performance of the application improves by ap-
proximately 30% and the energy saving is around 34% for the completion of the
experiment. Figures 10 and 11 show the placement of the microservices in the
cluster by the default scheduler and our custom scheduler, respectively.

References

[1] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya, “A Taxonomy and
Survey of Energy-Efficient Data Centers and Cloud Computing Systems,”
Advances in Computers, vol. 82, pp. 47–111, 2011.

[2] A. Beloglazov, J. H. Abawajy, and R. Buyya, “Energy-aware Resource
Allocation Heuristics for Efficient Management of Data Centers for Cloud
Computing,” Future Generation Comp. Syst., vol. 28, no. 5, pp. 755–768,
2012.

[3] A. J. Younge, G. von Laszewski, L. Wang, S. Lopez-Alarcon, and
W. Carithers, “Efficient Resource Management for Cloud Computing En-
vironments,” in Proc. of International Green Computing Conference 2010,
2010, pp. 357–364.

[4] C. Richardson, “Pattern: Microservice Architecture.” [Online]. Available:
http://microservices.io/patterns/microservices.html

[5] J. Lewis and M. Fowler, “Microservices: A Defini-
tion of This New Architectural Term.” [Online]. Available:
https://martinfowler.com/articles/microservices.html

[6] T. Mauro, “Adopting Microservices at Netflix: Lessons for Architectural
Design.” [Online]. Available: https://www.nginx.com/blog/microservices-
at-netflix-architectural-best-practices/

[7] J. Sloyer, “Microservices in Bluemix.” [Online]. Available:
https://www.ibm.com/blogs/bluemix/2015/01/microservices-bluemix/

[8] L. Minas and B. Ellison, Energy Efficiency for Information Technology:
How to Reduce Power Consumption in Servers and Data Centers. Intel
Press, 2009.

[9] Kubernetes, “Kubernetes,” last accessed: October 2018. [Online].
Available: http://kubernetes.io/

[10] S. C. Johnson, “Hierarchical Clustering Schemes,” Psychometrika, vol. 32,
no. 3, pp. 241–254, 1967.

16

[11] R. Xu and D. Wunsch, II, “Survey of Clustering Algorithms,” IEEE Trans-
actions on Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[12] Kubernetes, “Go client for kubernetes.” last accessed: November 2018.
[Online]. Available: https://github.com/kubernetes/client-go

[13] Prometheus, “Prometheus instrumentation library for go appli-
cations,” last accessed: November 2018. [Online]. Available:
https://github.com/prometheus/client golang

[14] SciPy, “scipy.cluster.hierarchy.linkage,” last accessed: Novem-
ber 2018. [Online]. Available: https://docs.scipy.org/doc/scipy-
0.14.0/reference/generated/scipy.cluster.hierarchy.linkage.html

[15] Instana, “Robot-shop,” last accessed: October 2018. [Online]. Available:
https://github.com/instana/robot-shop

[16] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp. 1830–
1845, 2009.

[17] “ab - apache http server benchmarking tool - apache http server version
2.4,” https://httpd.apache.org/docs/2.4/programs/ab.html, (Accessed on
12/02/2018).

[18] “Apache jmeter,” https://jmeter.apache.org/, (Accessed on 12/02/2018).

17

