
1

NDNREST: RESTful applications over Named Data
networking

Harshavardhan Kadiyala, Rain Gu ,
Susmit Japhalekar , Ravneet Kaur

Abstract—Named Data Networking (NDN) is an information-
centric networking architecture that can route data based on
the content names instead of the source and destination address.
NDN uses interest packets to request data from content providers
and data packets to receive data. At first look, NDNs pure
pull-based communication model seems to match the request-
reply mechanics of REST interactions. However, modern REST-
ful communication involves passing client-side information and
application state in requests. In this project, we implemented
changes to the existing packet format of NDN to facilitate client-
side information in interest packets; we will explore potential
threats to the privacy of REST clients due to shared in-network
cache and propose changes to the forwarding strategy which will
help in effectively running modern RESTful applications over the
NDN communication architecture. Our primary goal is to show
NDN can support modern RESTful communication patterns
effectively with minimal changes to existing NDN architecture.

I. INTRODUCTION

In today’s Internet, Web is a universal platform for various
kinds of services, from familiar content browsing and media
streaming to purpose-built applications hosted in browsers
and in stand-alone agents like node applications. Many web
applications are deployed over HTTP protocol [1] [2], which
are based on a request/response model running on top of a
TCP connection to the server. A client sends a request in the
form of an HTTP request containing a URI [3], request meta-
information, and possible body content. The server responds
with an HTTP reply containing entity meta-information, and
possible entity-body content [4].

Majority of these Web applications use a transactional
paradigm known as Representational State Transfer (REST)
[5]. REST improves scalability by distributing application state
from servers to clients. A RESTful request is self-contained
and carries all the information necessary for a service to
process the request. Without the client-side context, a RESTful
service may be inefficient or impaired, or may not be able to
function at all. The familiar HTTP cookie is a simple form of
distributed context, where a service uses the HTTP protocol
to convey tokens, often opaque, to its clients. The tokens
are typically unique to each client; this allows the service to
associate multiple requests from a given client together. The
cookie may carry client-side state directly or may be used as
a reference to state held at the server.

The Named Data Networking (NDN) [6] project aims
to develop a new Internet architecture that can capitalize on
strengths and address weaknesses of the Internets current host-
based, point-to-point communication architecture in order to
naturally accommodate emerging patterns of communication.

Fig. 1: NDN packets [7]

By naming data instead of their locations, NDN transforms
data into a first-class entity. It also enables several radi-
cally scalable communication mechanisms such as automatic
caching to optimize bandwidth.

In this report, we will present a new framework for running
RESTful applications over NDN called NDNREST. We do not
believe it is either desirable or efficient to simply reproduce
HTTP bit-for-bit within an NDN protocol envelope. Rather,
we explore the approach of enabling NDN-based Web clients
to pass the necessary meta-information and application state
to Web server applications that use NDN. We also address a
potential problem like flow imbalance and potential privacy
concerns that can be caused due to client data being added
into interest packets.

In section III we will discuss the related work. Section
IV, we will discuss details about the implementation of NDN
over REST and the change in the protocol to support REST
style communications, along with the potential drawbacks of
our approach. We also address the privacy concerns of the
data cache in NDN, which is implemented as the Content
Store(CS), and proposed a user-initiated solution. Section V
specifies our evaluation strategy and results.

II. BACKGROUND

A. Named Routing

Communication in NDN [7] is driven by receivers i.e., data
consumers, through the exchange of two types of packets:
Interest and Data. Both types of packets carry a name that
identifies a piece of data that can be transmitted in one Data
packet (see Fig.1).

To carry out the Interest and Data packet forwarding func-
tions, each NDN forwarder [7] maintains three data structures:
a Pending Interest Table (PIT), a Forwarding Information Base
(FIB), and a Content Store (CS) (see Fig.2), as well as a
Forwarding Strategy module that determines whether, when
and where to forward each Interest packet. The PIT stores all

2

Fig. 2: Forwarding Process at an NDN Node [7]

the Interests that a router has forwarded but not satisfied yet.
The Content Store is a temporary cache of Data packets the
router has received. The forwarding information base (FIB)
table use the names to route a request to next hop routers
that are closer to the data provider by performing longest-
prefix matching. The hierarchy also allows name resolution
and data routing information to be gathered across similar data
source names, which is the key point to enhance scalability
and flexibility of the network architecture.

NLSR [8] is a routing protocol in NDN that populates
NDNs routing Information Base. The main design goal of
NLSR is to provide a routing protocol to populate NDNs
FIB. NLSR calculates the routing table using link-state or
hyperbolic routing.

III. MOTIVATION AND RELATED WORK

In this section, we will explore problems with implementing
RESTful applications on current NDN network and existing
solutions.

As we view the current state of RESTful communication.
we see that RESTful clients have data to send in their requests,
in the form of HTTP header meta-data and other application-
specific RESTful states. But, in the NDN interest packets,
all of the client-side context and meta-data associated with
a request must be encoded in the Interest name field: no other
field is present in the base NDN architecture [4]. Encoding
client data inside name can cause adverse effects in other
parts of NDN network. NDN forwarders use name to forward
interest packet; if names contain a large amount of client
data each forwarder has to process long names before passing
interest packet to next hop; this can cause long delays in
forwarders and can decrease overall network throughput.

Moreover, Many client requests are intimately bound to
the client context data associated with them; the context
and the request are carried together in the HTTP commu-
nication protocol messages. The client-specific data tends to
make each request unique even when clients are accessing
common resources or services. For example names such as
https://www.example.com/¡data¿ are possible in HTTP, ¡data¿
field depend on client specific processing at runtime. On the
other hand, NDN Content objects are immutable, and the
object names are bound to fixed data. Services are not able
to return different results based on client specific processing
unless the clients use unique names in their requests.

In NDNREST, we transfer client data as a part of extended
interest packet. This approach is simple as NDN network uses
TYPE-LENGTH-DATA format [6] which can be dynamically

changed at runtime to inject new information without affecting
other parts of NDN network. Our approach will not produce
any extra delays during propagation and supports dynamic
names. However, it breaks one of the major assumptions of
NDN network that interest packet has fixed size and size is
less than the data packet size.

These assumptions in the NDN can cause flow imbalance
in the network when a large amount of data is sent through
interest packet. A RESTful application that required a larger
client payload is quite a common scenario in general REST
applications [4]. The data being transferred through interest
packet can be large enough to make bandwidth accounting
for Interests more important. We addressed this problem in
NDNREST by adding interest data based flow balance to
default forwarding strategy of NDN forwarder.

One of the key features of NDN is the router-side content
caching provided by Content Store, it significantly increases
the overall performance of communication in NDN by taking
advantage of data packets that are independently named and
verifiable at all ends. However, this in-network feature is also
a potential leaking point of the privacy of data consumers.
The previous works [9] have shown that there is a possibility
for “simple and difficult-to-detect” timing attacks [10] through
which an adversary can uncover the recent history of content
retrieved by its neighboring users, which takes the Content
Store in their shared NDN router as “oracles” using a desig-
nated sequence of probing.

There are several works [10], [9], [11] which have pro-
posed potential solutions that are designed for mitigating RTT
Timing Attack on the privacy of Content Store in NDN and
other similar caching stores in Content Oriented Network.
The solution can be classified into three groups: (1) naive
solution, (2) probabilistic caching, (3) delay-based caching.
There are also works [12], [13], [14] that demonstrates how
to collaborate with other NDN routers to form Collaborative
Caching, but in NDNREST, we only address the solutions
within the scope of local NDN network.

A naive solution to this problem is not to cache any data
packets in content stores. This solution provides perfect pri-
vacy for all data consumers and still fit into NDN architecture,
however, the benefit from one of the main advantages of
NDN that the data packets are perfect candidates for in-
network caching is completely disappeared and degrades the
overall performance. There are other solutions proposed that
essentially results in same performance as no cache situation.
In Wait Before Reply [10], all requests are delayed for an
interval of time equivalent to the round trip time that they
took when they are originally fetched from producers even if
requested content is available in the Content Store.

The other group of solutions propose to introduce random-
ness into the caching policy based on the internal states of
a router which is unknown to any users. This will provide
probabilistic privacy for users hence the assumptions that the
adversary can make is also probabilistic. Psaras et al. [11] pro-
posed that the router could generate randomness based on its
position in the forwarding path as well as the available space
in the cache. Once a request is received, the decision whether
the data packet should be cached is replied on the random

3

number generated. By using this solution, the adversary can
not make any solid conclusion to the request history of its
neighbours since only a randomly chosen subset of requests
were cached. However, once the target name is cached by
chance, the adversary can still exploit its neighbour’s activities.
Therefore, the trade-off between privacy and performance lies
on the size of this cached subsets.

The last group of solutions to this problem advocates
delaying the requests several times before they can be normally
retrieved from Content Store. Acs et al.[10] proposed Delay
the First k, In this approach, each request will be intentionally
delayed k times, where k is a random number. The main
advantage of this approach is that the popular names would
unlikely to suffer from a long delay, and will not be randomly
dropped from the cache. However, the algorithm that selects
k should be carefully determined and possibly require the
consideration of the popularity of names. The disadvantage of
this approach is that the unpopular names suffer from longer
latency.

In the second and third group of solutions, the authors
intentionally weak the guarantee of achieving perfect cache
privacy in order to improve the overall performance. The
randomness of the fact that a certain name is cached is also
applied to the conclusion an adversary can make, which
will lower the chance of making a solid conclusion by the
adversary. In our solution, we adopt the delay-based solution
in which users can explicitly mark the name as private, and
the subsequent public requests from other clients to the same
name will result in a cache miss. This will only delay the
request at most once since the public request to the name
will make data associated with the name being cached in
the content Store, this would prevent the adversary from
distinguishing how this name is cached.

IV. METHODOLOGY

In this section, we will explore changes made to existing
NDN infrastructure for running transactional and interactive
REST- or Web-like applications over NDN. We focus on the
key issue as we see it: how can servers obtain the client meta-
data and context information that is associated with client
requests?. We introduce new packet format, major advantages
that come with adding a new field to interest packet, we will
also discuss major disadvantages of running REST applica-
tions on NDN with new packet format and solutions to these
potential problems.

A. Changes to existing Interest packet format

Existing interest packet is a fixed size packet which can
serve NDN style producer-consumer communication pattern
effectively. Current interest packet offers an efficient way to
request a data object from producer using a named prefix. It
has options to bypass the cache and specify interest validity.
It contains a consumer’s public key which can be used by
the producer to encrypt requested data before transferring. All
these features mentioned above can be used by a REST-based
application and get benefits of enhanced security and named

Fig. 3: Changed packet format

data transfer. However, to invoke requests which are updating
(put) or creating a new resource (post) in a REST application
requires the network to support the transfer of client-side data
to a server. To facilitate this with existing NDN protocol, an
application requires multiple handshakes and a requirement
for a special name to be registered by the client, which helps
server to contact back. These hand-shakes can be costly and
result in performance degradation of applications.

In NDNREST, we introduced changes to Interest packet
structure which will enable the efficient transfer of client-side
data to a server. A new field APPDATA (see Fig 3) is added
to interest to carry client information. APPDATA organized as
a collection of bytes and can be accessed using NDNREST
API calls for put and post. We made this changes in existing
client-side library PyNDN2 [15] which is used by NDNREST
IV-D for low-level NDN functionality.

The Interests with the APPDATA field has the following
benefits:

1) The APPDATA field is opaque to routers. No special
name components are present, and no special name
processing takes place at routers. This new packet can
be transferred using existing NDN network.

2) If a client Interest packets name a cacheable object,
intermediate routers can perform normal CS processing
and return the cached data.

3) The application context information travels directly with
the Interests; the client context, name, and returning data
remain bound together.

4) The application data can be transferred just once and no
additional round-trips are needed.

Along with many above advantages mentioned above, we
have seen some potential problems with adding unsolicited
data to interest packets.

1) Adding client data in Interest packets increases Interest
packet size, possibly substantially. The NDN property of
flow balance assumes that Interest packets will generally
be small compared to the corresponding Data packets.
Pushing unsolicited data might compromise that prop-
erty and cause flow imbalance in NDN network.

4

2) Different REST clients share common content store
which can be a privacy issue.

In the remaining part of this section, we will discuss
solutions to above problems.

B. Interest data based flow balancing in NFD

NDN’s hop by hop flow balance is one of the 6 design
principles of NDN [16]. It enables each node to control load
over its links by deciding which link should be used to forward
interest packet, router commits bandwidth for the returned data
packet. By limiting the number of interest packets sent, each
router and client node in the network control how much data
it will receive through that link. We believe this fundamental
flow balancing approach in NDN has an inherent flaw as they
assume data returned for each interest packet has the same
size which may not be the case for real applications.

By adding client-side data to interest packets, we are break-
ing initial assumptions that interest packets are of fixed size
doesn’t require flow balancing. Interest packets coming from
NDNREST can contain large client-side data and are required
to be considered when flow balance is done in NDN forwarder.
In this project, we implemented a simple interest packet flow
balance into NFD.

Algorithm 1 Pseudo code for Flow balance of Interest packets

1: function FINDELIGIBLENEXTHOP(Interest, outLink)
2: NextHopsList = getNextHopsList(Interest.prefix)
3: ForEach Hop in NextHopsList do
4: FaceData[Hop.LinkId()] ≤ minimumdatasize
5: minimumdata = FaceData[Hop.LinkId()]
6: nextHop = Hop
7: outlink = nextHop
8: end function
9: function AFTERRECEIVEINTEREST(inLink, Interest)

10: findEligibleNextHop(Interest, outLink)
11: FaceData[outLink.Id()] += Interest.size()
12: end function
13: function BEFORESATISFYINTEREST(InLink, Interest)
14: FaceData[InLink.Id()] -= Interest.size()
15: end function

The algorithm 1 is designed to keep track of data carried
on every active request sent through each link and identify a
link with lowest active interest data. In NDN every data packet
follows the same path as interest packet. So we can keep track
of the total size of interest data transferred through a link
for which data producer not yet sent the data packet back.
“afterReceiveInterest” method gets called every time a new
interest packet arrives at the NDN forwarder, In this callback,
we will find next hop with lowest interest data transferred for
which data packet not yet arrived using “findEligibleNextHop”
method. Once we found the link to be used to transfer
Interest packet, it will be forwarded in that link and FaceData
dictionary is used to keep track of link id and amount of
data transferred. When the data packet arrives at the hop
“beforeSatisfyInterest” will be called and the interest data
will be removed from the link in which data packet arrived.

Our implementation is evaluated and is performing better than
existing flow control at balancing interest packet load between
links.

C. Cache Privacy Concern

To provide privacy for clients using content Store in NDN
router that is shared by multiple users locally, we propose
the solution that delays at most once when there is potential
private leak regarding the name requested. The protection
scheme does not modify any caching policy or mechanism in
current NDN router’s design. Compared to the other previous
work, our solution requires user as the initiator to initiate its
own privacy concern by explicitly marking the request as a
private one.

1) Threat Model: The interesting point regarding this
privacy concern in local NDN network with shared NDN
router is that the adversary is relatively powerless but still able
to make accurate assumptions about its neighbours’ recent
request history. To be specific about the term “ neighbour”,
it refers to all the users that share a particular NDN router as
their first hop in NDN network. An adversary in this model
has no additional access to any part of the network, such
as the hosts of honest users and NDN router, and can send
Interest packet with any desire names. In other words, the
adversary is not able to monitor, alter, or block the traffic in
any part of the local network. The next section shows how
exactly an adversary is able to learn about useful information
only by measuring several RTTs for different requests.

2) RTT Timing Attack: The core of this Timing Attack
is based on two facts that (1) all data packets received by
an NDN router will be cached in Content Store and (2) the
latency of fetching a cached content in a router is significantly
longer compared to fetching the ones that are not cached.
Therefore, only by measuring and comparing RTTs of fetching
some content, an adversary can determine if a particular
content has been recently fetched by the other users that
share this NDN router as the first hop with the adversary.
Let target name being the name that the adversary wants to
confirm that has been recently fetched by any of its neighbors,
and cached name being any known cached names in the
router. An adversary A can perform the attack as follow:

1) sends Interest packet with target name, and records
RTTtarget name.

2) sends Interest packet with cached name, and records
RTTcached name.

3) sends Interest packet with non cached name, and
records RTTnon cached name.

Now IF (RTTtarget name − RTTcached name) < ε for
negligible ε AND (RTTnon cached name > RTTcached name),
the previous work has shown that A can conclude target name
has been recently fetched by any of its neighbors with high
probability. There is also works show that the cache
replacement policy has only a small impact on the success

5

rate of this Timing Attacks.

3) User-Initiated Delay Once Protocol: In our solution
User-Initiated Delay-Once(UIDO), we add two data structures
PTable and PubList to maintain the privacy information and
modify the Interest Packet dispatching procedure of the names
for detecting private request. Any user now can choose to mark
the name as a private request with a random nonce. The nonce
associated with this private name should only be known by the
user-generated.

To maintain the private request information, an extra data
structure called PTable is used to stores records in the format
as (name, nonce, delayed) in each entry. For example, when
a user issues an Interest Packet with name “/a$private+1”, the
possible entry in PTable would be (“/a/”, “1”, false). Multiple
entries with the same name but different nonce are allowed
to stay in the meantime. An entry in PTable will be removed
only when a public request with the same name(“/a/” in this
case) is received by the router. The boolean delayed is used
to check if this private request has already been delayed for
once when there are multiple entries with same name existing
in PTable.

Another data structure named PubList is used to keep track
of the names that are recently being queried through public
requests, with the format of (name, timeToLive). Each entry in
PubList is associated with an attribute(timeToLive) to indicate
the liveness of this name as being public one. In other words,
for every name in a public request, the name will be marked as
public for a time interval with random length, and timeToLive
will reset to a new value each time the name is requested if the
name was in PubList. The router also needs to periodically
check if any of the entries times out in the PubList and
removes them from PubList.

Putting them all together, the protocol for a router to
dispatch and process an Interest packet with name n now
becomes as follows:

If n is not marked as private, the router:
• Checks if n is in PubList:
• YES: updates timeToLive of n in PubList and proceeds.
• NO: checks if there are entries in PTable with name n:

– YES: removes all entries with name n in PTable.
Adds n into PubList. Delay once.

– NO: adds n into PubList and proceeds.

If n is marked as private with nonce a, the router:
• Checks if n is in PubList:
• YES: considers this request as public one and proceeds.
• NO: checks if PTable have any entries with name n:

– YES: checks if any of these entries have nonce a.
∗ YES: proceeds.
∗ NO: insert (n, a, true) into PTable. Delay once.

– NO: insert (n, a, true) into PTable, and proceeds.

Let’s re-exam the RTT Timing Attack with this new pro-
tocol. The user that wants to request the target name can
mark it as a private request. The adversary’s request with this

Fig. 4: State Machine of A private request ”/a/private+1”

target name will not result in a cache hit since this public
request would have to delay once. Instead, the adversary can
also send a private request to target name, which will also
be delayed since the nonce that adversary provides should
not match the nonce stored in PTable. In either case, the
following requests to this target name may result in cache hit
if it is not evicted yet, but the adversary cannot conclude that
target name is requested by the other users since the adversary
also had requested for this name and it could be a reason for
the cache hit.

However, there is still a way for the adversary to learn
about the activities of the other users. In NDN router, there
are no explicit limitations on the number of requests that each
user can send, so any user is able to flood requests with a
different name until all old entries in Content Store are evicted
and replaced with new ones. Consider the following attack.
Before user sends the request for target name, the adversary
can send a public request to target name, which will add
target name to PubList. Then the adversary flood requests
with other names to make sure target name is no longer in
the Content Store. Now the user sends the private request to
target name, and since target name may still be in PubList,
this request is marked as public, and cached in Content Store.
Now if adversary requests again for the target name and get
cache hit, it can conclude that the user has just requested for
target name.

To address this problem, the protocol now adapts as follow:
when a name in Content Store is being evicted, the router
removes the entry with this name in PubList. Now the
full protocol can be described as the FSM in Fig 4, which
demonstrates the state change with respect to a private request
“/a$private+1”. The states are Public, Private, and Cached,
in which Public and Private are mutually exclusive. The
empty states can be either the name is never requested yet or
just recently evicted from Content Store and removed from
PubList as well. Public state means the “/a/” is in PubList,
Private state means “/a$private+1” is in PTable, and Cached
means “/a/” is in Content Store. The name “/a$private+2” is
only one instance of a private request that has name “/a/” but
with a different nonce.

6

4) UIDO Limitations: The privacy concerns of Content
Store is especially high when the population that shares
a certain NDN router is minimal (only one user and one
adversary). Our protocol is able to protect user’s privacy in
such case and with the experimental results shown that the
overall performance is not significantly degraded with this
privacy protection. As the number of users increases when
push this privacy concerns to global scope, the larger size of
anonymity set naturally provide another class of the protection
of privacy. Even though we only target at protecting the cache
privacy in a local scope, the protocol should be also working
in the global scope in every NDN router since the local case
with a minimal number of users is the worst case for privacy
protection.

The other limitation besides the performance degrade is
the extra information that the router needs to maintain for
protecting privacy such as the PTable and PubList. Even
though the size of each entry is not very large but there is
no limitation or restriction to prevent the flooding of private
requests that may significantly occupy the space resource in
NDN router which is quite limited. In the future work, it’s
possible to add time-based or popularity-based eviction policy
in PTable as well to save space in the router. Another related
concern is the privacy marker “/private+nonce”, which will
always increase the Interest packet size by some bytes. The
naming issue related to NDN architecture is getting worse in
this design. Some may argue that we could modify the internal
layout of Interest Packet by adding a private bit to indicate
whether it is a private request, however, this approach would
save few bytes in name but also require the adjustment in NDN
router when dispatching the packets received.

As for User-Initiated part, this design can also be viewed
as a limitation compared to the other previous solutions that
the NDN router makes all decision about privacy protection by
considering all requests are potential privacy required requests.
However, in our opinion, the privacy concerns vary from user
to user, thus not all request needs to be considered as private
one and this decision would reduce the amount of work on
processing the private requests. In our solution, even though
the user now needs to make a decision about its own privacy,
the amount of extra work is minimal compared to make a
normal public request in the original design.

D. Client Interface for NDNREST

The interface design for NDNREST is similar to that of
Flask [17], a micro-framework for Python based REST
applications. In this section, we will give an introduction to
interfaces NDNREST provides.

In REST every resource is uniquely addressable using a
uniform and minimal set of commands that is GET, POST,
PUT DELETE.

1) GET method is used to read or retrieve a representation
of a resource.

2) POST is most-often utilized to create new resources.
3) PUT is most-often utilized for update capabilities, PUT-

ing to a known resource URI with the request body con-

Fig. 5: Mechanism of Rest over NDN

taining the newly-updated representation of the original
resource.

4) DELETE is used to delete a resource identified by a URI

NDNREST uses PyNDN2 [15] library to access low-level
functionality required to talk to NDN local hub. Original
PyNDN2 is updated with new packet format for NDN Interest
and used for NDNREST’s put and post functionality.

from n d n f l a s k i m p o r t F l a s k
app = F l a s k (NFD)

@app . r o u t e (” / h e l l o ” , methods =[’GET ’])
d e f h e l l o () :

r e t u r n ” H e l l o World ! ”

app . run ()

NDNREST client library creates a persistent server face
interface with NDN forwarding daemon and registers itself
with the local hub when an application comes up (refer Fig 5).
It creates an identity and generates RSAKeyPair. It exchanges
public key required to sign packets with local hub. NDNREST
receives REST commands from the application and registers
prefixes using function “route”. With client-side data support,
NDNREST can support POST and PUT methods using the
same interface. In these methods, request body contains a
newly-created or newly-updated representation of the resource.
NDNREST client library provides various a cache control
features for a client to control in-network cache. It helps the
client to specify cache specific parameters like freshness which
is used by the content store to determine the validity and it
also helps clients to maintain private caches in the content
store.

We tested compatibility of NDNREST with existing Flask
applications in GitHub and able to run them on NDN network
with no changes to existing application code.

1) Cinema microservice [18]
2) Blockchain application [19]
3) Scikit learn models [20]
4) ChatterBot application [21]

V. EVALUATION

A. Evaluation goals

1) The Performance impact of NDNREST.
2) The Effectiveness of Interest packet based flow balance

and decreasing load on links.
3) The Performance impact of private cache on perfor-

mance.

7

Fig. 6: Test setup

Fig. 7: Average round-trip time

B. Test Setup

We have two VMs deployed on the same physical machine.
In each VM, NDNREST applications are deployed as a docker
container and each VM has an NDN router deployed as docker
container to connect to NDN network.

C. Performance impact of NDNREST

We also evaluated NDNREST round-trip times and com-
pared it with round-trip times of same data transfer without
using NDNREST. The application that doesn’t use NDNREST
uses names to transfer client-side data. We compared round-
trip time(RTT) of Interest packet with NDNFlask and without
NDNFlask. We measured the average round-trip time for
iterations 5 to 65. Fig 7 shows the graph of average round-
trip time for Interest packet with NDNFlask and without
NDNFlask. Average round-trip time taken by normal Interest
packet to get data was 9ms while with NDNFlask it took
5ms, reduction of delay by 44%. We were able to achieve
this reduction because of a decrease in additional processing
delays of long names in each forwarder.

D. Evaluation of new Flow balance algorithm

NDN router deployed in each VM is replaced with our
NDN router with new interest-based flow balance. Several
instances of server application are created on VM2, and each
instance registers itself with deployed NDN router creating
multiple links for the same name. We used NDNREST client
application deployed on VM1 to send 10000 put requests each
containing 360 BYTES to the server creating congestion in the
network.

We computed round trip time for each request-reply and
plotted a graph with original NDN flow balance and with new

(a) With New Interest packet flow balance.

(b) Without Interest packet flow balance.

Fig. 8: Performance of Flow balance.

flow balance. The figure (ref 8b) has more spikes than figure
(ref 8a) indicating that new NDN interest flow algorithm helps
in spreading the flow evenly and decreasing link overload.

E. Evaluation of private cache

Due to the extra data structures and protocol procedures
added to the NDN routers, the performance is expected to be
decreased compared to the original NDN routers. The purpose
of this experiment is not to prove the correctness of our
UIDO privacy protocol, but to present what is the performance
impact that comes with the new privacy protection. To test the
performance of our UIDO privacy protocol, we design the
experiment to measure the round-trip times by making 1000
requests with different patterns of names belonging to three
categories: (1) Normal Public:Original NDN router, (2)UIDO
Public: UIDO NDN router with all requests as public requests,
and (3)UIDO Private: UIDO NDN router with all request as
private ones. The reason we are not measuring the cache hit
rate is that with UIDO protocol, the cache hit does not change
in any situation. The intentional delay in some cases does not
change the status of entries in private content Store, but the
only request has to wait for a short interval of time. Therefore,
measuring the overall RTTs is more reasonable to demonstrate
the performance impact of the new router.

Since our privacy protocol is targeted at resolving the
privacy issue in the local scope, only one local NDN router

8

is required and no further hops to other NDN router on the
way to the echo server. To simulate the other class of latency
such as propagation delay, and queuing delay outside the local
scope, we add the randomly varying latency on server side
range from 0.0 to 0.25 sec. The server also has registered all
possible names and connected to the local NDN router. In the
local NDN network, we also use only one NDNREST client
as the user instead of creating multiple instances, because, in
the aspect of the new NDN router, the potential latency is
only associated with names requested which are independent
of sources. As for the private requests, all of them will choose
nonce randomly to represent multiple users.

We measure the RTTs with two access patterns of names: (1)
multiple names follow Normal Distribution on their popularity,
(2) Access to multiple names in Uniform Distribution, and
(3) all accesses to one single name. The first and second
pattern represents the average case that popular names tend to
be requested much more frequently to simulate the common
access patterns in the real world. The third pattern is the
best case for the original NDN router where nearly every
request will result in a cache hit, but it is also the worst
case for UIDO NDN router sending all private requests with
the different nonce and all of them will be delayed due to
protection. This scenario is designed to find the upper bound
of the performance of our UIDO router.

The results are shown in Fig 9(a) demonstrates that on
the accesses patterns in Normal Distribution, the performance
with UIDO regardless of public or private degrades compared
to the original NDN router especially when the number of
requests getting bigger. The results Fig 9(b) has also shown
with UIDO the performance is not as good as the original
one but not asymptotically significant. For both patterns, the
performance difference between UIDO Public and Private is
also about the same. In Fig 9(c), which is the worst case for
our UIDO Private, the performance of UIDO Private is much
worse compared to the other two candidates which are nearly
overlapped. These results met our expectation that with UIDO,
the overall performance on average cases is decreased but not
significantly. The performance on a worst case scenario can be
considered same as not using any cache at all and the penalty
is proportional to the latency retrieving the Data packet from
the server since each request would trigger the delay.

VI. CONCLUSION

In this report, we proposed a new NDNREST client library
with changed interest packet format and also improvements
to existing NDN forwarder which will help current HTTP
based RESTful applications to run efficiently and securely on
NDN network. We also proposed a privacy protection protocol
that minimizes the length of latency while keeping relatively
same performance in average case as using the original NDN
router. We believe that NDN’s fixable architecture helped
these changes to be compatible with existing infrastructure
and helped NDNREST applications to co-exist with other pure
NDN applications. We envision that in future NDN network,
every class of applications will have its own extensions to de-
fault protocol and forwarding strategy yet co-exist in the same

(a) Accesses to names in Normal Distribution

(b) Accesses to names in Uniform Distribution

(c) Accesses to A Single Name

Fig. 9: Performance impact with UIDO

core NDN network. This will enable a low-cost transition to
NDN network as it will be easy to make interfaces backwards
compatible with existing HTTP or TCP based infrastructure,
ultimately contributing to NDN’s success as a mainstream
content delivery network.

REFERENCES

[1] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext transfer
protocol–http/1.0,” Tech. Rep., 1996.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol–http/1.1,” Tech. Rep.,
1999.

[3] L. Masinter, T. Berners-Lee, and R. T. Fielding, “Uniform resource
identifier (uri): Generic syntax,” 2005.

[4] I. Moiseenko, M. Stapp, and D. Oran, “Communication patterns for
web interaction in named data networking,” in Proceedings of the 1st
international conference on Information-centric networking. ACM,
2014, pp. 87–96.

[5] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, 2002.

9

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[7] “NSF Named Data Networking project online,” http://www.named-data.
net/, accessed: 2017-10-08.

[8] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“Nlsr: named-data link state routing protocol,” in Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking. ACM,
2013, pp. 15–20.

[9] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,”
in Proceedings of the 7th ACM Conference on Computer and
Communications Security, ser. CCS ’00. New York, NY, USA:
ACM, 2000, pp. 25–32. [Online]. Available: http://doi.acm.org/10.1145/
352600.352606

[10] G. Acs, M. Conti, P. Gasti, C. Ghali, and G. Tsudik, “Cache privacy in
named-data networking,” in Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on. IEEE, 2013, pp. 41–51.

[11] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proceedings of the second edition
of the ICN workshop on Information-centric networking. ACM, 2012,
pp. 55–60.

[12] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for hierar-
chical web caches,” in Performance, Computing, and Communications,
2004 IEEE International Conference on. IEEE, 2004, pp. 445–452.

[13] D. Wessels, “Configuring hierarchical squid caches,” National Labora-
tory for Advanced Network Research, 1997.

[14] K. Claffy and D. Wessels, “Internet caching protocol (icp), version2,”
IETF RFC2186, 1997.

[15] “NDN client library with TLV wire format support in native Python,
https://github.com/named-data/pyndn2, accessed: 2017-11-15.”

[16] “ndn design principles, http://named-data.net/project/
ndn-design-principles, accessed: 2017-11-15.”

[17] “a micro-framework for REST based Python applications, http://flask.
pocoo.org, accessed: 2017-11-15.”

[18] “Cinema microservice, https://github.com/umermansoor/microservices,
accessed: 2017-11-15.”

[19] “Blockchain application, https://github.com/dvf/blockchain, accessed:
2017-11-15.”

[20] “Scikit learn models, https://github.com/amirziai/sklearnflask, accessed:
2017-11-15.”

[21] “ChatterBot, https://github.com/chamkank/flask-chatterbot, accessed:
2017-11-15.”

