
1

EnergyMAC : A Framework for User-centric
Energy Control

Harsha and Satish

Abstract—Smartphones are increasingly becoming an impor-
tant part of our life. With a limited battery capacity in smart-
phones, energy efficiency is an important requirement for good
android applications. Applications in a smartphone can have
varying degrees of importance for android user. For example,
healthcare apps tied to a smartwatch and financial apps which
report real-time market updates may be more critical and
important to users than mobile games. In the current Android
system, there is no feature for user to give more importance
for energy usage of certain apps over other. To address this, in
this project, we implemented an EnergyMAC framework which
enables users to prioritize energy for high priority applications
installed on their smartphones.

I. INTRODUCTION

Battery-driven devices such as smartphones, tablets and
wearables are now commonplace in our lives. Android has
become one of the dominant mobile platforms used in these
devices. Android app repositories, such as Google Play, have
created a fundamental shift in the way software is delivered
to consumers, with thousands of apps added and updated on a
daily basis. Various mobile app markets offer a wide range of
apps from entertainment, business, health care and social life.
Mobile phones today are filled with a large number of apps.
Market studies indicated that average android user contains 35
apps in their smart phone [1].

The capability of the smartphones has been increasing due
to the improvement in computation power and increasing num-
ber of sensors embedded in them. In the meantime, modern
mobile applications targeted for the smartphones make use of
more computation and sensors to give users more features for
improved user experiences and as an effect consume more
power. From a users perspective, this produces tangible and
pertinent problems. The use of energy-draining apps could
quickly leave a user with an empty battery and prevent using
the Smartphone even for basic features such as phone calls.
In addition, having and running such apps might require
frequent battery re-charges. This represents a problem as
modern batterys life is quite limited, often to a finite amount of
charging cycles (for Lithium-ion batteries), ranging between
300 and 500 cycles (with only 100-200 cycles after a mid-life
point) and gradually decreasing with time [2]. The expected
lifetime of the system is an important factor in the total user
experience [3] [4]

The usefulness of smartphone is now limited by the capacity
of the battery. The energy density of lithium-ion batteries used
in smartphones has only grown by four times since 1991 [5]
which is not in proportion with increasing rate of battery
consumptions by the hardware and software component on
the mobile and this not expected to grow any faster in near

future. To close this gap, there have been several efforts from
the researchers in academia and industry at different layers of
abstraction i.e. hardware, operating system, applications and
human interactions to use the energy efficiently. Offloading
computation intensive tasks from mobile devices to cloud to
save energy consumption on the battery have been found to be
successful [6] [7]. Though all these optimizations are done
in the interests of users however user preference has not been
taken into consideration.

Android OS introduced new features such as Doze, Standby
modes, background service execution limit etc. to optimize the
battery life. In Doze mode, the system attempts to conserve
battery by restricting apps’ access to network and CPU-
intensive services. It also prevents apps from accessing the
network and defers their jobs, syncs, and standard alarms. In-
App Standby mode, network access is restricted and pending
syncs and jobs are deferred for unused applications. In the
recent Android OS update to 8.0, the system places restrictions
on the app running in the background. A lot of effort has been
put in attributing expended system energy to apps [8] [9] [10].
This has helped the app developers in the spotting energy bugs,
hotspots[11] and insights like batching network operations [8]
to optimize energy usage and motivated them to develop
energy efficient apps. OS treats all the app fairly but a user
might have the different preferences for different apps as per
their need. Such applications may be apps that provide basic
functionality such as dial pad or safety critical apps such as
healthcare apps or financial applications.

Current energy management techniques in android give a
little scope for energy control of applications based on user
preferences. Though many apps are installed in a phone,
research on usage patterns of mobile applications in general
media [12] [13] suggests that users use only a few apps
frequently. These important set of applications have high
priority from user’s perspective. But remaining apps installed
on the phone also consume energy for background process
such as ads [14] and for sophisticated functionality such as
sensors. But in today’s Android system, there is no feature to
give priorities for certain apps and restrict power consumption
by other less important apps.

In this work, we present an Android-based framework called
EnergyMAC (Energy-based Mandatory Access Control) which
is user-centric energy management framework for controlling
energy usage by the Android applications as per the user
preference.

Later in the report, in section II, we present problem solved
in this project, different stakeholders and important system
requirements. In section III, we present system design and
how it satisfies system requirements. In section IV, we present



2

detailed architecture of our implemented system. Section V
talks about evaluation approach. Section VI talks about related
work and how we are different. Finally, we will end the report
by describing lessons learnt, next steps and constributions of
each team member.

II. PROBLEM

Our main contribution in this project is a framework based
on Android to enable user-centric energy management. This
framework will enable users to give priority to the energy con-
sumption of apps that are of high value to them. Furthermore,
it will also give incentive for developers to create applications
that are energy efficient.

There are three stakeholders that are mainly affected by this
framework

1) Android end users
2) Android App developers
3) Smartphone device manufactures

Users have a limited power in their Smartphone batter-
ies. Among many applications installed by a user on their
Smartphone, only a few frequently used applications are more
important for them. For a user who is mindful of his battery
life may want to restrict applications that have a high energy
usage but has a little value for the user. To restrict such
apps from consuming all of the energy, a user can use our
framework to provide a priority for each app installed on their
Smartphone. A user can give either high, medium, or low
priorities for an app based on their preference. By default,
applications will be in low priority when they are initially
installed in the phone.

High priority applications and the Android operating system
itself are considered to be most important applications for the
user and are allowed to unrestricted use of the energy. Energy
usage of medium and low priority applications are considered
to be less important for the user and energy usage of these
applications are restricted by our framework.

Android application developers should adapt their lower
priority applications to make them more energy efficient.
Energy used by applications will be accounted for and certain
system resources will be denied when they use more energy
than allowed by its priority. Application developers should
accommodate these new insufficient energy errors and build
their app accordingly to work for low, medium and high
priorities. Some of the current applications such as Facebook
have both full-fledged and lite applications for different kinds
of phones and networks.

Accurate energy accounting depends on specific device and
battery used. Hence the framework should be customizable
for device manufacturers so that they can optimize for their
devices and battery type used.

Keeping various stakeholders in mind, our system should
always ensure following requirements.

1) Always higher priority applications can use more energy
than a lower priority application.
Our framework’s main functionality is to restrict energy
used by lower priority applications. On the other hand,

it should allow unrestricted access to energy for high
priority and system apps.

2) Fairness in-terms of energy availability among all appli-
cations belonging to same priority should be ensured.
If two applications are having same priority they both
should have access to the same amount of energy. This
may not guarantee two applications actually use the
same amount of energy.
For example, if App 1 comes into the system when the
battery is completely charged and executes until the end;
App 2 has same priority but comes when the battery is
completely drained it may not use the same amount of
energy due to unavailability of energy in the battery. But
in both cases framework should not restrict the app from
using the same amount of energy if it is available.

3) The framework should consider the changes in total
available energy as the battery drains over the time.
As total available energy changes framework should
further tighten restrictions on lower priority applications.
This will ensure high priority applications and android
system can run longer.

4) It should also take into account the changes in the
number of energy consumers that are active in the
Smartphone.
Android applications will dynamically enter the system
and leave the system. Framework should ensure new
consumers are not effecting existing ones and fairness
is ensured among all applications that are running.

5) The framework should have minimal overhead.
6) The framework should ensure failures due to lack of

energy are graceful and developers are notified.
This is required for developers to understand why their
application failed and write code to wait for energy
availability before executing next operation.

7) The framework shouldn’t reclaim energy once allocated
to an app.
The developer decides which system resources to use
and which to avoid based on energy availability. It will
be hard for developers to decide which system resources
to use if allowed energy limit set by the framework is
not guaranteed.

8) Apps should benefit when system gains energy due to
recharge of the battery.

9) The system should be customizable for different hard-
ware devices and battery.

In the next section, we will look at how system is designed
to satisfy these properties.

III. SOLUTION

A. System design

In this section, we will introduce unit of measurement
for energy in our framework, how we account for energy
consumption by the applications and finally, we will describe
how we allocate energy between applications to ensure system
properties are met.



3

B. Unit of measurement

An abstract unit of energy in our system is called energy
credit. Having an abstracted unit will help us to make the
framework more customizable for Android device makers.
By default, an energy credit is equivalent to 1 mAs in the
current prototype implementation. When a resource of an
Android system such as the network or the disk is used by an
application, it will spend some energy credits equivalent to the
amount of energy spent in executing that system functionality.

C. Energy accounting for system resources

Android uses Linux kernel to manage system resources. In
Linux kernel, system calls are the single point of contact for
all user-level applications. Any user functionality that requires
system resources such as network can only be executed by
calling corresponding system calls. Using this fact, there are
many previous android energy modeling techniques such as
Eprof, which can calculate the energy consumption for each
system call. In our framework, we will estimate amount of
energy required to execute a system call and allow system
call to execute only when required energy for application is
available.

System calls can have either constant or varying energy cost.
System calls such as socket::connect has a constant energy
cost and socket::send has an energy cost depending on the
amount of data it needs to send. Constant cost system calls
can be estimated before hand and can be stored in a hash table.
Verifying system calls with dynamic cost require a model to
predict cost based some variables such as amount of data to
be transfered as in the case of socket::send. These models
can be different for different devices, we can create these
models using values estimated by Eprof [8] based on different
parameters such as length of data.

D. Allocation of credits

Energy credit allocation among applications in a dynamic
system such as Android can be tricky. The total number of
available energy credits change as the battery is discharged
continuously. Number applications consuming energy will also
change with time. Furthermore, some applications will only
be installed in the system, but may never be used. Hence it’s
important to carefully allocate energy credits to ensure all of
the system properties stated in the section IIare met.

The lithium-ion batteries used in modern Smartphones have
the capacity range from 1000 mAh to 5000mAh. For example,
If a phone is fully charged and the battery has a capacity of
2000mAh and if applications has a continuous load of 200 mA,
then the battery will last for 10 hours. By decreasing load on
the battery, we can decrease overall power consumption and
increase battery life. In the previous example, if applications
only has a load of 100 mA then the battery will last for
20 hours. To facilitate this we need to limit the amount of
energy spent by applications. In our framework, we will limit
number energy credits an low priority application can spend
in a time period. In the prototype implementation, we had the
time period as 1 min.

Our system should limit energy consumption of low and
medium android applications without affecting the energy
consumption of the system and high priority applications. To
ensure this, we will allocate an infinite number of credits
for high priority and system apps. For medium and low
priority applications, we will allocate 0.1% and 0.05% of total
available credits respectively per time period.

E. Example

Below is the example on how it will work
Our example smart phone battery have 2000 mAh as capac-

ity for fully charged battery. if time period is 20 secs and limit
for energy is 3000mAs for low priority app. If operations as
specified in example given by Pathak et al. [8] are executed
in the below order

1) Cost of disk operation is 400mA and ran for 3 secs
2) Cost of small network transfer is 125mA and ran for 7

sec.
3) Cost of large network transfer is 500mA and ran for 10

sec.
Execution of system calls:
• Then number of credits remaining after 1st operation ran

will be 3000 - (400mA*3) = 1800mA
• Number of credits that will be spent on small network

transfer will be 1800 - (125*7) = 925
At this point of time, application don’t have enough
credits to continue and it can execute next system call
(costs 5000 mAs) for network transfer only when app
can be at higher priority.

• System call for large network transfer will fail and app
developer will be force to wait until next time period
(to get enough credits back) to execute series of small
data transfers which are less costly than a large network
transfer.

F. How we met system properties

In this section, we will explain how our design choices will
help us achieve system requirements (as stated in Section II)
for our framework. System requirement 5 is implementation
goal not a design one.

1) System requirement 1: This framework design will en-
sure that lower priority applications always has limited
available energy without restricting high priority and
system apps.

2) System requirement 2: The fairness is ensured as frame-
work always restricts applications by same rate of energy
given battery availability is same.

3) System requirements 3 and 8: Rate is proportional to
amount of battery available. So if energy available in
battery increases rate also increases and more energy
will be available to applications.

4) System requirement 4: Rate of energy spent will be
same irrespective of how many applications are there
in the system. Even if all the low priority applications
are running and starts spending energy still the impact
will be minimal on the battery as each can spend only
0.05% of battery.



4

Fig. 1. Architecture.

5) System requirement 6: Our framework will always throw
an exception when energy is not available. Furthermore,
developer will also know time period for which energy
credits will refresh and also number of energy credits
app will acquire.

6) System requirement 7: Our framework allocates limited
number of energy credits for short time periods. This
design choice is required as we are uncertain on how
many applications will be active in future and can’t
allocate energy credits for applications before hand.
Once allocated developer can be sure given energy
credits will remain with the application.

7) System requirement 9: Device manufactures can opti-
mize system by changing parameters such as 1) equiv-
alent energy for each energy credit(1 energy credit =
1 mAs or 2mAs etc.), 2) number of energy credits
allocated per time period, 3) length of time period.

G. Limitations

1) The number of credits required to execute a system call
is approximation of original energy spent and depends
on accuracy of cost model.

2) Battery characteristics such as charge will change over
the lifetime of the battery and system properties and
models should be constantly updated to reflect this.

3) Certain existing operations which require high energy in
short time period may fail.

4) In cases such as tail energy applications can have energy
impact without calling system calls.

H. Assumptions

Following are assumptions we make in the Android system

1) We account for all energy consumption with system
calls.

2) Apps either run in background or foreground are con-
sidered active and consume energy.

3) Inactive apps don’t consume energy.
4) The total amount of available energy is constant for the

time period.

IV. IMPLEMENTATION

A. Technical Approach

Our EnergyMAC framework (see Fig 1) comprises of four
components:

1) Energy Credits allocation System App (ECA app): is
a system app that facilitates user to see and allocate
priorities for user apps installed in the mobile device.
When a user allocates the priorities for apps, ECA app
invokes the system call of Energy Accounting Manager
in android kernel to save the app details and designated
credits.

2) System Call Interceptor: is a component that intercepts
the system calls from apps and consults Energy Account-
ing Manager to check credits that will be spent for that
System Call and credits remaining for the app. If the
enough energy credit is available, then it redirects to
the actual system call else custom exception is thrown
stating that required energy credits are not available for
that operation.

3) Energy Accounting Manager: Two hash tables for stor-
ing records related to app’s priority, assigned credits,
and each System call’s estimated cost (constant cost)
are created in the Kernel. One table i.e. Energy account,
is used for storing the app UID, priority and assigned
credits and another table named Cost sheet is used for
storing System call info and corresponding constant cost
in terms of credits. Energy account will be refilled with
credits at the end of each time period using a Linux
kernel timer.
Energy Accounting Manager has access to above tables
and exposes APIs for various operations:

• Get priority and length of time period for app/s
• Update priority for app/s
• Get cost of system call
• Update cost of system call
• Check if a given system call is allowed

4) System Call Price Manager: initializes cost table with
cost for all system calls that have constant cost. More-
over, it will also estimate cost of variable cost system
calls using models. These models will be derived from
previous work such as Eprof.

B. How it works

Android OS is divided between User Space and Kernel
Space based on the type of actions that can be performed
by user program and OS itself. This separation is required to
provide isolation and abstraction. The Kernel has the privileges
for managing the system resources and User programs do not.
So, user program communicate with Kernel via system call to
use services provided by OS.

Each system call is represented by a number in system call
table in the kernel. Since apps in the user space invoke system
call for different operations, this system call can be intercepted
and decision can be taken whether the system call should be
executed. This is the basis for enforcing the energy accounting
policies on apps in our energy accounting system.



5

In Energy accounting system, the user allocates the available
priorities for the apps that user intends to use via ECA App.
This internally invokes the custom system calls that are part
of Energy Accounting Manager, to update the priority of the
apps and data is stored in the Energy account hash table. The
accounting system had a kernel timer which times out at the
end of each time period and credits will be updated in Energy
account hash-table based on the priority of the app for next
time period.

The cost of each system call in terms of energy credits is
decided by the System Call Price Manager depending upon
the energy model for that system call and constant costs will
be stored in the hash table named Cost sheet.

When an app, in this case, GPS App, tries to use get the
location, then it invokes the system call to get the location of
the device. At this time, the system call is intercepted by the
Interceptor and it checks with the Energy Accounting Manager
if an app has enough credits to actually invoke that system
call related to GPS. If the app has credits more than required
to invoke the system call, then the Interceptor redirects to
the actual system call and the corresponding credits for that
system call is deducted from the allocated credits for that
app. Otherwise, the custom exception is thrown back to the
application stating that not enough credit is available for that
operation and app has to adapt itself accordingly.

The app can also check whether the operation is permitted
and also time period with Energy Accounting Manager and
change App’s behavior accordingly.

C. Implementation choices

There are mainly 5 different layers in Android OS i.e.
System Apps, Java API framework, Native Libraries and
Android Run time, Hardware Abstraction Layer and Linux
Kernel. The Energy Accounting system could have been part
of any layer but the decision to make it part of Kernel for the
following reasons:

1) The operations will be protected: The malicious apps
will not be able to steal the energy credits or change
priority of other benign apps. Only System app and
kernel components will have access to the system call
related to energy credits update APIs.

2) If it were pushed to any layer above kernel, that would
have involved changes in multiple components in that
layer and it would not have been easily extendibles for
future changes. The kernel is the centralized place to
receive all the system calls and due this the changes
required in one place and less invasive. For example if
this energy accounting were to be moved to the Java API
framework level, closer to the layer where app reside,
then the changes had to be done in multiple components
like Location Manager, Telephony manager,etc in this
layer and that would have been more invasive.

3) Previous work such as Eprof has models for calculating
energy costs of system calls.

Following changes were made in OS Kernel as part of the
implementation:

Fig. 2. Results for file downloads

1) System calls and their implementation corresponding to
the APIs of the Energy Accounting Manager were added
to the Kernel.

2) Two hash tables were created in the kernel memory to
store energy accounting related information.

3) The system call number of the GPS system call i.e. sys
ioctl was replaced by the system call number of the
Interceptor in the system call table in the kernel.

V. EVALUATION

In this section, we evaluate the performance overhead due
to the control mechanism we have implemented in android
kernel. In our experimental set up, we use original and
modified Goldfish Kernel on a emulator on a Linux machine
for testing.

A. Experimental Goal

Our idea focuses on giving the control to user on how the
energy will be spent by different apps installed on the mobile
phone. So, it becomes equally important to check and make
sure that user does not see major performance hit in the system
while using. The end goal of this experiment is to obtain
performance overhead in terms of time introduced due to our
changes.

B. Methodology

We developed a simple android app using which a user
has options to download files of different sizes. In our ex-
periment, we download a file of size 5 MB 20 times from
server[https://www.thinkbroadband.com/download]and this is
repeated for files of other sizes i.e. 10MB, 20MB, 50MB one
after another from same server using our custom android app
on the Android emulator. This experiment is conducted for
two cases when (i) Emulator is running original/unmodified
Goldfish kernel (ii) Emulator is running Goldfish kernel with
our modifications for control mechanism.

C. Results

We conducted evaluation by running the experiment 20
times for each file size as mentioned in the previous section



6

and recorded the time taken for download and plot the data
collected from the experiment. Figure 2 presents our exper-
imental results. From this figure, it can be noted that mean
overhead due to our modification is minimum i.e. under 2
seconds and this overhead would less likely to be visible to
the user. Ideally, the overhead due to our modifications should
remain constant as the operations of validating and updating
the energy credits in the kernel layer for the apps remain same
but the results show that it varies. This variation for each file
size can be attributed to the fluctuations in download speed
and network traffic.

In future, we plan to experiment using other user activity
which is least affected by network fluctuations or any other
factors.

VI. RELATED WORK

There is a large body of work on energy/power consumption
of Android apps. Prior related studies can be categorized
into three categories: power modeling, energy accounting and
energy management.

Research in power modeling suggests estimating the energy
usage of mobile devices or apps in the absence of hardware
power monitors [15], [16]. These software-based approaches
build models and capture model parameters from programs
using static-analysis techniques.

Studies in power/energy accounting make use of specialized
hardware, such as Monsoon [9], and map the sampled mea-
surements to execution traces to determine an app’s energy
consumption at various granularities. Pathak et al. [8] de-
velop fine-grained energy profiler-Eprof to account for energy
spent among apps in smartphone. EnergyMac, on other hand,
leverages these ideas from modeling and energy accounting
techniques to estimate energy requirement of app activities to
enforce strict energy access limits on applications.

EcoSystem [17] aims to extend battery lifetime by limiting
the average discharge rate and to share this limited resource
among competing tasks on the Laptop according to user
preferences. Cinder [18], a completely new operating system
designed for mobile, tries to control the power consumption
of applications accurately through managing battery energy
as one kind of system resources. EnergyMac also treats the
battery as resource and gives its control of discharge to the
user and this is mainly focused for Android OS.

VII. LESSONS LEARNED

We had two major challenges during execution of the project
1) When we started with the project the problem was not

well understood by the team. Our work on initial designs
and flaws in our solutions made us think more about
the problem and what we are trying to solve. As we are
building a new system, we started listing down system
properties or requirements our system has to satisfy. This
gave the basis for evaluating designs. We thank professor
Julia and everyone in ReSeSS lab for helping us on this.

2) Our initial problem only contained end-users as stake-
holders and solutions directed towards that. Later, we
realized for a developer ensuring system properties such

fairness and deterministic behaviour of the system is also
an important part of our problem. We learned that when
designing a new system we need to map all stakeholders
first and list their varying interests in the system.

3) We spent a considerable amount of time in achieving
right architecture for the system like working on kernel
modules which can be avoided and rough prototype
would have proved the same point.

VIII. NEXT STEPS

1) Currently the only constant cost is used for system calls,
this should be replaced by cost models for variable cost
system calls.

2) Evaluate amount of energy consumed by the framework.
3) Instrument and Evaluate functioning of the framework

on open source mobile applications.
4) A user study for evaluation of Usability of the frame-

work.

IX. CONTRIBUTION OF EACH TEAM MEMBER

A. Harsha

1) Design of the solution
2) Architecture of implementation
3) Implementation of Account manager

B. Satish

1) Design of the solution
2) System call interceptor
3) ECA App and Evaluation

REFERENCES

[1] “Average number apps installed in smartphones,”
https://www.thinkwithgoogle.com/data-gallery/detail/
average-number-apps-installed-smartphones/, 2017, accessed: 2018-03-
03.

[2] M. Linares Vasquez, G. Bavota, C. Bernal Cardenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014, pp.
2–11.

[3] S. Kim, H. Kim, J. Hwang, J. Lee, and E. Seo, “An event-driven
power management scheme for mobile consumer electronics,” IEEE
Transactions on Consumer Electronics, vol. 59, no. 1, pp. 259–266,
2013.

[4] B. Li and S. Park, “Energy efficient burst scheduling in mobile tv
services,” IEEE Transactions on Consumer Electronics, vol. 59, no. 1,
pp. 24–30, 2013.

[5] J. Janek and W. G. Zeier, “A solid future for battery development,”
Energy, vol. 500, no. 400, p. 300, 2016.

[6] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai, “Furion: Engineering
high-quality immersive virtual reality on today’s mobile devices,” in
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking. ACM, 2017, pp. 409–421.

[7] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality
on mobile devices via rendering memoization,” in Proceedings of the
14th Annual International Conference on Mobile Systems, Applications,
and Services. ACM, 2016, pp. 291–304.

[8] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,” in
Proceedings of the 7th ACM european conference on Computer Systems.
ACM, 2012, pp. 29–42.

[9] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Appli-
cation energy metering framework for android smartphone using kernel
activity monitoring.” in USENIX Annual Technical Conference, vol. 12,
2012, pp. 1–14.



7

[10] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2010, pp.
105–114.

[11] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting energy bugs and hotspots in mobile apps,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 588–598.

[12] “Techcrunch consumers spend 85 of time on smartphones in apps but
only 5 apps see heavy use,” http://tcrn.ch/1LwiWfU, 2017, accessed:
2018-03-03.

[13] “Techcrunch time spent in apps up 63 percent over past two years but
apps used monthly shows little change,” http://tcrn.ch/1HvpsEp, 2017,
accessed: 2018-03-03.

[14] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Workshop on Mobile
Security Technologies (MoST), vol. 10, 2012.

[15] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 92–101.

[16] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating source
line level energy information for android applications,” in Proceedings
of the 2013 International Symposium on Software Testing and Analysis.
ACM, 2013, pp. 78–89.

[17] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “Ecosystem:
Managing energy as a first class operating system resource,” ACM
SIGOPS operating systems review, vol. 36, no. 5, pp. 123–132, 2002.

[18] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich, “Energy management in mobile devices with the cinder
operating system,” in Proceedings of the sixth conference on Computer
systems. ACM, 2011, pp. 139–152.


